CORROSION-RESISTANT ALLOYS

A nickel-base alloy with superior corrosion resistance to commercial phosphoric, sulfuric, nitric/hydrochloric, nitric/hydrofluoric acids and other complex environments containing highly oxidizing acids.

Contents

Principal Features	3
Chemical Composition	3
Typical Applications	4
Corrosion in Phosphoric Acid	5
Corrosion in Other Acids	6
Effect of Aging on Corrosion	7
Pitting Resistance	7
Isocorrosion Diagrams	8
Physical Properties	10
Hardness	11
Tensile Data	11
Fabrication	12
Welding	13
Machining	14
Availability	15

About Haynes International, Inc.

Haynes International, Inc., dates back to 1912 with the founding of the Haynes Stellite Works in Kokomo, Indiana.Here, Elwood Haynes, the noted inventor, produced some of the first cobalt-base alloys. The company has relied on a strong technology base ever since.

HASTELLOY® alloys are known throughout the chemical process industry as the premier corrosion resistant materials. HAYNES® high-temperature alloys are equally well known in the aerospace field for their unique heat-resistance qualities. Both of these groups of alloys were developed and perfected in Kokomo.

Haynes International is stocked and staffed to respond immediately to virtually any high performance alloy requirement. The company's technical backup and applications knowledge are unsurpassed.

Properties Data

The properties listed in this booklet are average values based on laboratory tests conducted by the manufacturer. They are indicative only of the results obtained in such tests and should not be considered as guaranteed maxima or minima. Materials must be tested under actual service conditions to determine their suitability for a particular purpose. The secondary units (metric) used in this booklet are those of the SI system.

Service and Availability are Paramount at Haynes International, Inc.

Over 2-million pounds of finished goods inventory of high performance alloys is maintained by Haynes International, Inc. This is believed to be the largest in the industry. Seven world-wide service centers are linked by a computer "browsing" system which

enables any one center to access availability information from all of the others. Haynes International is dedicated, through this network, to the prompt fulfillment of customer requirements for heat- or corrosion-resistant alloys.

Supplies of corrosion-resistant alloy plate are stockpiled in the Haynes International, Inc. Houston service center to serve the surrounding chemical process industry.

Pipe and tubing are other items available for immediate delivery from Houston.

One-half inch x 12 ft. shear at Windsor, Connecticut service center supplies customers in the northeast with sheet and light plate, cut-to-size.

Large stocks of alloy mill products are also maintained at the Kokomo service center.

AVERAGE IMPACT AND BEND TEST DATA, WELDMENTS

	Charpy	/ V-Notch Impa	act Strength	1		
Weld	Room Temp	erature	–320°F (-	-196°C)	Bend Tests, *	
Process	ftlb.	J	ftlb.	J	2-T	1.5T
GTAW 1/8 in. (3.2mm) dia. wire	106	144	74	100	Passed	Passed
GMAW (short arc) 0.045 in. (1.1mm) dia. wire	103	140	77	104	Passed	Passed
GMAW (spray) 0.045 in. (1.1mm) dia. wire	99	134	70	95	Passed	Passed

^{*2} side bends, 1 face bend, 1 root bend. Bend angle 180°

MACHINING

The following are guidelines for performing typical machining operations upon G-30° alloy wrought stock. Exact details for

specific machining jobs will vary with circumstances of the particular job. Other tool materials not listed here may be suitable for machining G-30 alloy under various conditions. For further information, please consult publication H-2010.

Operation	High Speed Steel Tools	Carbide Tools
Normal Roughing (Turning/Facing)	M-40 series, M-2, M-33, T-4, T-8 and T-15. 45° SCEA*, 0° Back Rake + 10° Side Rake, 1/16" nose radius 1/4" depth of cut max., 0.020 feed max. 25 sfm cutting speed Water-base coolant*	C-1 or C-2 grade square insert, 45° SCEA, -5° Back Rake, -5° Side Rake, 1/16" Nose Radius 1/4" depth of cut max., 0.020 feed max., 60-80 sfm depending on rigidity of setup. Dry°, oil ^a , or water-base coolant°
Finishing (Turning/Facing)	M-40 series, M-33, M-3, T-8 and T- 15 15-45° SCEA, + 10° Back Rake, + 15° Side Rake, 1/32-1/16" nose radius, 0.040-0.010" depth of cut, 0.005-0.010" feed, 30-45 sfm Water-base coolant	C-2 or C-3 grade square insert, if possible 15-45° SCEA, + 5° Side Rake', + 5° Back Rake, 1/32-1/16" nose radius 0.040-0.010" depth of cut, 0.005-0.010" feed, 90-175 sfm Dry or water-base coolante
Drilling	M-33, M-40 series, or T-15 Feed 0.001"/Rev. 1/16" dia. 0.002"/Rev. 1/4" dia. 0.003"/Rev. 1/2" dia. 0.004"/Rev. 1" dia. Speed 10-20 sfm Oil or water coolant Use coolant feed drills if possible Use short drills, heavy web 135° crankshaft grind points wherever possible.	C-2 grade not recommended, but solid or tipped drills may be successful on rigid setups. The web must be thinned to reduce thrust. Use 135° included angle on point. 30-60 sfm Coolant-feed carbide tipped drills be economical in some setups. Oil- or water-base coolant.

NOTES: a SCEA - Side cutting edge angle or lead angle of the tool

b Water base coolant should be premium quality, sulfochlorinated water soluble oil or chemical emulsion with extreme pressure additives. Dilute with water to make 15:1 mix.

At any point where dry cutting is recommended, an air jet directed on the tool may provide substantial tool life increases.
 A water-base coolant mist may also be effective.

d Oil coolant should be a premium quality, sulfochlorinated oil with extreme pressure additives. A viscosity at 100°F from 50 to 125 SSU.

Water base coolant may cause chipping and rapid failure of carbide tools in interrupted cuts.

f Negative rake tools should be used for interrupted cuts.

PRINCIPAL FEATURES

Superior Corrosion Resistance to Commercial Phosphoric Acids and Oxidizing Acid Mixtures

HASTELLOY® G-30® alloy is a high chromium nickel-base alloy which shows superior corrosion resistance over most other nickel-and iron-base alloys in commercial phosphoric acids as well as many complex environments containing highly oxidizing acids such as nitric/hydrochloric, nitric/hydrofluoric and sulfuric acids.

The resistance of G-30 alloy to the formation of grain boundary precipitates in the heat-affected zone makes it suitable for use in most chemical process applications in the as-welded condition.

Product Forms

HASTELLOY G-30 alloy is available in the form of plate, sheet, strip, billet, bar, wire, covered electrodes, pipe and tubing.

Some Typical Applications

- Phosphoric Acid Service
- Sulfuric Acid Service
- Nitric Acid Service
- Nuclear Fuel Reprocessing
- Nuclear Waste Processing
- Pickling Operations
- Petrochemicals
- Fertilizer Manufacture
- Pesticide Manufacture
- Gold Ore Extraction

Field Test Program

Samples of G-30 alloy are readily available for laboratory or inplant corrosion testing. Analysis of

corrosion resistance of the tested material can also be performed and the results provided to the customer as a free technical service. Try testing HASTELLOY G-30 alloy. Just contact any of the convenient locations shown on the back cover of this brochure.

ASME Boiler and Pressure Vessel Code

HASTELLOY G-30 alloy plate, sheet, strip, pipe, tubing and fittings are covered by ASME product specifications SB581, SB582, SB619, SB622, SB626 and SB366 under UNS number N06030.

CHEMICAL COMPOSITION, PERCENT*

Ni ^a	Co	Cr	Mo	W	Fe	Si*	Mn	C*	Others
43	5.0**	28.0- 31.5	4.0- 6.0	1.5- 4.0	13.0- 17.0	0.8**	1.5**	0.03**	Cb + Ta = 0.3-1.5 Cu = 1.0-2.4 P = 0.04** S = 0.02**

^{*}The undiluted deposited chemical composition of G-30 alloy covered electrodes has 0.04 percent carbon and 1.0 percent silicon.

^{**}Maximum.

a As-halance

TYPICAL APPLICATIONS

HASTELLOY® G-30® alloy has outstanding resistance to hydrofluoric/nitric acid mixtures such as employed in the pickling of stainless steel. This particular operation involves aerated, 15% HNO₃ and 5% HF at 140 deg. F. (60 deg. C)

HASTELLOY G-30 alloy exhibits better resistance to commercial phosphoric acid than any known nickel- or iron-base alloy. Its use is growing in the fertilizer industry for acid evaporators.

WELDING

HASTELLOY® G-30® alloy is readily welded by Gas Tungsten-Arc (GTAW), Gas Metal-Arc (GMAW), and Shielded Metal-Arc (covered electrodes), welding techniques. Its welding characteristics are similar to those for HASTELLOY G-3 alloy. Submerged-Arc welding is not recommended as this process in characterized by high heat input to the base metal and slow cooling of the weld.

Base Metal Preparation

The joint surface and adjacent area should be thoroughly cleaned before welding. All grease, oil crayon marks, sulfur compounds and other foreign matter should be removed.

Filler Metal Selections

Matching composition filler metal is recommended for joining G-30 alloy. For gastungsten-arc and gas-metal-arc welding, HASTELLOY G-30 alloy filler wire (ERNiCrMo-11*; UNS NO6030) is suggested. For shielded-metal-arc welding, G-30 alloy covered electrodes (ENiCrMo-11*; UNS W86030) are suggested.

Detailed fabricating information for G-30 alloy is available in the booklet, "Fabrication of HAYNES-Corrosion-Resistant Alloys" (H-2010).

*Pending

AVERAGE TRANSVERSE TENSILE DATA, WELDMENTS

Form	Weld Type	Test Temp., °F (°C)	Ultimate Tensile Strength Ksi*	Yield Strength at 0.2% offset, Ksi*	Elongation in 2 in. (50.8mm), pecent	Reduction of area, percent
Sheet,	GTAW	Room	98	48	39	_
0.125 in.		1000 (538)	71	30	45	_
(3.2mm) thick		1400 (760)	55	27	34	_
Plate, 1/2 in.	GTAW	Room	103	57	60	70(a)
(12.7mm)	¹ /8 in.	1000 (538)	71	32	56	60(a)
thick	(3.2mm) dia. filler wire	1400 (760)	54	32	33	25(b)
Plate, 1/2 in.	GTAW	Room	101	53	55	62(a)
(12.7mm)	(short arc)	1000 (538)	73	33	59	32-64 (a,c)
thick	0.045 in. (1.1mm) dia. filler wire	1400 (760)	54	29	27	15-26 (a,b,c)
Plate, 1/2 in.	GMAW (spray)	Room	101	55	51	54(b)
(12.7mm)	0.045 in.	1000 (538)	71	36	49	49(b)
thick	(1.1mm) dia. filler wire	1400 (760)	55	30	34	29(a)

(a)—Fracture in base metal (b)—Fracture in weld metal (c)—Fracture in heat-affected zone

^{*}Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

AVERAGE TENSILE DATA	, ALL-WELD	METAL			
Weld Type	Test Temp., °F (°C)	Ultimate Tensile Strength Ksi*	Yield Strength at 0.2% offset, Ksi*	Elongation in 2 in. (50.8mm), pecent	Reduction of area, percent
GTAW	Room	102	68	36	43
¹ /8 in. (3.2mm)	500 (260)	82	52	34	41
dia. filler wire	1000 (538)	72	48	37	40
GMAW	Room	104	67	43	40
0.045 in.	500 (260)	83	50	40	36
(1.1mm) dia. filler wire	1000 (538)	74	47	44	39

^{*}Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

FABRICATION

Heat Treatment

Wrought forms of HASTELLOY® G-30® alloy are furnished in the solution heat-treated condition unless otherwise specified. The standard solution, heat-treatment consists of heating to 2150°F (1177°C) followed by rapid air-cooling or water

quenching. Parts which have been hot formed should be solution heat-treated prior to final fabrication or installation.

Forming

G-30 alloy has excellent forming characteristics and cold forming is the preferred

method of forming. Because of its good ductility, it can be easily cold-worked. The alloy is generally stiffer than the austenitic stainless steels. Therefore, more energy is required during cold forming. For further information, please consult publication H-2010.

ROOM TEMPERATURE TENSILE DATA, COLD-WORKED AND AGED PLATE							
Condition	Ultimate Tensile Strength, Ksi*	Yield Strength at 0.2% offset, Ksi*	Elongation in 2 in. (50.8mm), percent	Reduction of Area, percent			
Mill Annealed	100	46	64	77			
10% cold rolled	116	88	38	62			
30% cold rolled	159	145	12	57			
50% cold rolled	173	158	12	50			
50% cold rolled + 1 hr. at 932°F (500°C), air cool	180	161	12	45			
50% cold rolled + 5000 hrs. at 932°F (500°C), air cool	192	168	8	14			

^{*}Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

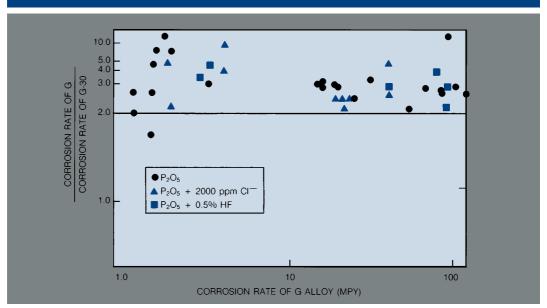
EFFECT OF COLD WORKING AND AGING ON ROOM TEMPERATURE IMPACT STRENGTH

	Charpy V-No	otch Impact Strength
Condition	ftlb.	J
Mill Annealed	260	353
50% cold rolled	31	42
50% cold rolled + 1 hr. at 932°F (500°C)	33	45
50% cold rolled + 500 hrs. at 932°F (500°C)	11	15

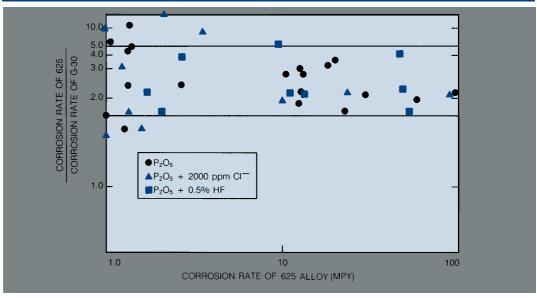
EFFECT OF AGING ON IMPACT STRENGTH OF 1/2 IN. PLATE

		Charpy V-Notch Impact Strength				
		Room Temperature		-320°F ((-196°C)	
Condition	Orientation	ftlb.	J	ftlb.	J	
Mill Annealed	Longitudinal	260	353	261	354	
Mill Annealed	Transverse	260	353	262	355	
MA* + 1 hr. at 1400°F (760°C)	Longitudinal	200	271	_	_	
MA + 24 hrs. at 1400°F (760°C)	Longitudinal	58	79	_		
MA + 1 hr. at 1600°F (871°C)	Longitudinal	96	130	_	_	
MA + 24 hrs. at 1600°F (871°C)	Longitudinal	2	3	_	_	
MA + 1 hr. at 1800°F (982°C)	Longitudinal	48	65			

^{*}MA = Mill Annealed


COMPARATIVE CORROSION RESISTANCE IN COMMERCIAL PHOSPHORIC ACID

The comparative corrosion resistance of HASTELLOY G-30 and G alloys or 625 alloy in commercial phosphoric acid, is shown below. The corrosivity of commercial phosphoric acid is a function of several variables such as concentration, temperature, impurity levels and origin of the


phosphate rock. Wide variations in corrosion rates are possible in acids of the same concentration but from different sources. Hence, corrosion tests were conducted in acids from a number of suppliers and the performance of G-30 alloy relative to HASTELLOY G alloy and 625

alloy is shown as a function of the corrosion rate of G alloy and 625 alloy respectively. In general, G-30 alloy performs 2-10 times better than G alloy or 625 alloy in acids of corrosivity corresponding to corrosion rates in the range of one to one hundred mils per year.

RATIO OF CORROSION RATES OF G ALLOY/G-30 ALLOY FOR VARIOUS CONDITIONS

RATIO OF CORROSION RATES OF 625 ALLOY/G-30 ALLOY FOR VARIOUS CONDITIONS

COMMERCIAL PHOSPHORIC ACID* CORROSION DATA

			Average Corrosion Rate per year, mils**				
Media	Temp.,	°F (°C)	G-30® alloy	625 alloy	G-3 alloy	Sanicro 28	
28% P ₂ O ₅ + 2000 ppm C1 ⁻	185	(85)	1.0	1.5	0.9	31	
42% P ₂ O ₅ + 2000 ppm C1 ⁻	185	(85)	0.9	1.3	11	121	
44% P ₂ O ₅	241	(116)	7.0	23	22	_	
44% P ₂ O ₅ + 2000 ppm C1 ⁻	241	(116)	7.7	25	22	_	
44% P ₂ O ₅ + 0.5% HF	241	(116)	16	60	49	_	
52% P ₂ O ₅	241	(116)	3.9	12	11	48	
52% P ₂ O ₅	300	(149)	28	79	64	248	
54% P ₂ O ₅	241	(116)	8	16	16	55	
54% P ₂ O ₅ + 2000 ppm C1 ⁻	241	(116)	7	15	16	92	

COMPARATIVE	AOID OODD	OLONI DATA
: PARAIIVE	$\Delta U \cup U $	

Concen-	
tration	

	tration,				
	percent by	Test Temp.,	Average	Corrosion Rate pe	r year, mils*
Media	weight	°F (°C)	G-30 alloy	G-3 alloy	625 alloy
Acetic Acid	99	Boiling	1	0.6	<1
Formic Acid	88	Boiling	2	5	9
Nitric Acid	10	Boiling	0.4	0.9	1
	60	Boiling	5.3	8.5	16
	65	Boiling	5	11	20
Nitric Acid + 1% HF	20	176 (80)	31	74	123
Nitric Acid + 6% HF	20	176 (80)	177	540	2400
Nitric Acid + 1% HF	50	176 (80)	192	420	_
Nitric Acid + 0.5% HF	56	230 (110)	47	110	_
Nitric Acid + 0.5% HF +	56	230 (110)	50	113	_
2000 ppm CI –					
Sulfuric Acid + 10% Nitric Acid	50	Boiling	16	30	_
Sulfuric Acid	2	Boiling	8	6	6
	10	Boiling	31	19	46, 25
	20	Boiling	54	30	124, 91
	50	225 (107)	37	37	223
	80	125 (52)	12	23	33
	99	266 (130)	43	74	_
	99	284 (140)	46	57	_
Sulfuric Acid + 42 g/l Fe ₂ (SO ₄) ₃ (ASTM	50 G28A)	Boiling	7	11	23,17
Sulfuric Acid + 5% Nitric Acid	70	Boiling	133	240	_
Sulfuric Acid +	60	Boiling	45	84	105
5% Nitric Acid		9			
Sulfuric Acid + 8% Nitric Acid + 4% HF	77	129 (54)	0.4	1.5	_
Nitric Acid + 8% HCI	18	176 (80)	2	18	6
Nitric Acid + 11% HCl	25	176 (80)	23	914	126
Nitric Acid + 3% HCI	59	176 (80)	5	34	20

^{*}To convert mils per year (mpy) to mm per year, divide by 40.

HARDNESS					
% cold work	unaged	200 hr./392°F (200°C)	100 hr./932°F (500°C)		
As Mill Annealed	Rb 90	_	_		
10	Rb 98	Rb 100	Rb 93		
20	Rc 29	Rc 26	Rc 25		
30	Rc 32	Rc 34	Rc 34		
40	Rc 35	Rc 38	Rc 40		
50	Rc 36	Rc 39	Rc 41		
60	Rc 40	Rc 43	Rc 44		
70	Rc 41	Rc 43	Rc 46		

ROOM TEMPERATURE TENSILE DATA*				
Form	Ultimate Tensile Strength, Ksi**	Yield Strength at 0.2% offset, Ksi**	Elongation in 2 in. (50.8mm), percent	Reduction of Area, percent
Sheet, 0.028 in. (0.71mm) thick	100	47	56	_
Sheet, 0.125 in. (3.2mm) thick	100	51	56	_
Plate, 0.250 in. (6.4mm) thick	98	46	55	_
Plate, 0.375 in. (9.5mm) thick	100	45	65	68
Plate, 0.500 in. (12.7mm) thick	100	46	64	77
Plate, 0.750 in. (19.1mm) thick	98	47	65	67
Plate, 1.250 in. (31.8mm) thick	99	45	60	_
Bar, 1.0 in. (25.4mm) thick	100	46	60	_

^{*} Solution heat-treated at 2150°F (1177°C), rapid air cooled or water quenched.
** Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

ELEVATED TEMPERATURE TENSILE DATA, PLATE AND BAR					
Test Tei	mp., (°C)	Ultimate Tensile Strength, Ksi*	Yield Strength at 0.2% offset, Ksi*	Elongation in 2 in. (50.8mm), percent	
Room		103	49	53	
200	(93)	95	42	54	
400	(204)	88	36	59	
600	(316)	83	33	59	
800	(427)	80	31	60	
1000	(538)	76	29	62	

Average of tests obtained from up to 11 production lots (three heats and thicknesses ranging from 0.25 to 1.25 inches) *Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

PHYSICAL PROPERTIES

	Temp., °F	British Units	Temp., °C	Metric Units
Density	70	0.297 lb./in. ³	22	8.22 gm/cm ³
Electrical	75	45.7 microhm-in.	24	1.16 microhm-m
Resistivity	212	46.1 microhm-in.	100	1.17 microhm-m
	392	46.9 microhm-in.	200	1.19 microhm-m
	572	47.6 microhm-in.	300	1.21 microhm-m
	752	48.4 microhm-in.	400	1.23 microhm-m
	932	48.8 microhm-in.	500	1.24 microhm-m
	1112	49.2 microhm-in.	600	1.25 microhm-m
Thermal	75	71 Btu-in./ft.2-hr°F	24	10.2 W/m·K
Conductivity	212	83 Btu-in./ft. ² -hr°F	100	11.9 W/m·K
	392	100 Btu-in./ft.2-hr°F	200	14.4 W/m·K
	572	116 Btu-in./ft. ² -hr°F	300	16.7 W/m·K
	752	130 Btu-in./ft.2-hr°F	400	18.7 W/m·K
	932	141 Btu-in./ft. ² -hr°F	500	20.3 W/m·K
	1112	149 Btu-in./ft. ² -hr°F	600	21.4 W/m·K
Mean Coefficient	86-200	7.1 microinches/in°F	39-93	12.8 x 10-6m/m·K
of Thermal	86-400	7.7 microinches/in°F	30-204	13.9 x 10-6m/m·K
Expansion	86-600	8.0 microinches/in°F	30-316	14.4 x 10-6m/m·K
	86-800	8.3 microinches/in°F	30-427	14.9 x 10-6m/m·K
	86-1000	8.6 microinches/in°F	30-538	15.5 x 10-6m/m·K
	86-1200	8.9 microinches/in°F	30-649	16.0 x 10-6m/m·K
	86-1400	8.9 microinches/in°F	30-760	16.0 x 10-6m/m·K

DYNAMIC MODULUS OF ELASTICITY (YOUNGS MODULUS)

Form	Condition	Test Temp., °F(°C)	Dynamic Modulus of Elasticity, 10 ⁶ psi (GPa)
Plate	Heat-treated to	75 (24)	29.3 (202)
	2150°F (1177°C),	400 (204)	28.4 (196)
	Rapid Quenched	600 (316)	28.2 (194)
		800 (427)	27.8 (192)
		1000 (538)	26.7 (184)

EFFECT OF AGING ON CORROSION RESISTANCE

Average Corrosion Rate in 20% HNO₃ + 6% HF at 176°F (80°C) per year, mils*

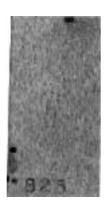
			Aging Time				
Aging T	ēmp.,		1 H	our		10 Hours	
°F	(°C)	G alloy	G-3 alloy	G-30 [®] alloy	G alloy	G-3 alloy	G-30 alloy
1200	(649)	860	438	223	3890	575	272
1400	(760)	12000	860	230	19000	2660	1600
1600	(871)	19000	2145	177	20000	4375	454
1800	(982)	19000	577	338	19000	640	427

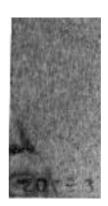
Base line corrosion rates on annealed samples from the same heat are alloy G-1075, alloy G-3-634, alloy G-30-230.

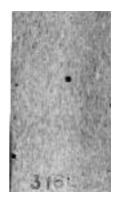
COMPARATIVE IMMERSION PITTING TEMPERATURES IN OXIDIZING ACIDIC CHLORIDE SOLUTION

The chemical composition of the solution used in this test is as follows: 4% NaCl + 0.1% Fe₂(SO₄)₃ + 0.01 M HCl. This solution contains 24,300 ppm

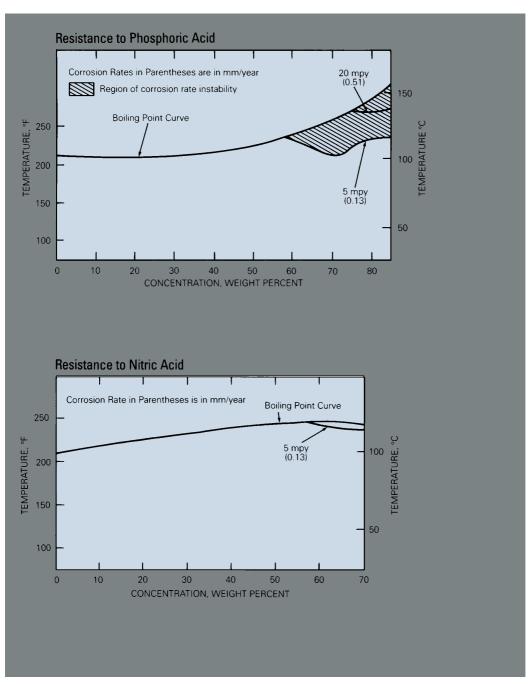
chlorides and is acidic (pH2). The solution temperature was varied in 5°C increments to determine the lowest temperature at which pitting corrosion initiated


(observed by examination at a magnification of 40X on duplicate samples) after a 24-hour exposure period (Critical Pitting Temperature).

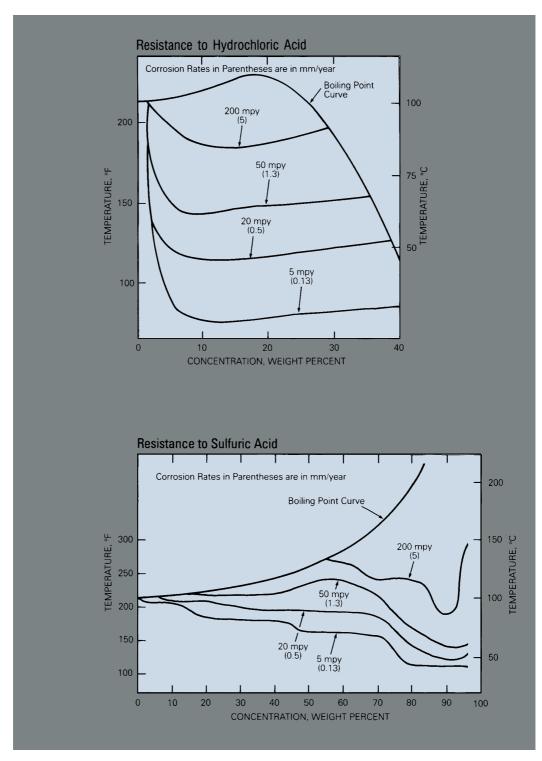

Critical Pitting Temperature,


Alloy	°C	(°F)
HASTELLOY® G-30® alloy	70	(158)
HASTELLOY G-3 alloy	70	(158)
Alloy No. 904L	45	(113)
Type 317LM Stainless Steel	35	(95)
Type 317L Stainless Steel	25	(77)
Alloy 825	25	(77)
20 Cb-3* alloy	20	(68)
Type 316 Stainless Steel	20	(68)

^{*}Trademark of Carpenter Technology Corporation.



All four of these alloys were immersed in 4% NaCl + 0.1% $Fe_2(SO_4)_3$ + 0.01M HCl at 122 deg. F (50°C) for 48 hours. HASTELLOY G-30 alloy was the only one not to pit.


^{*}To convert mils per year (mpy) to mm per year, divide by 40.

ISOCORROSION DIAGRAMS*

The isocorrosion diagrams shown on this and subsequent pages were plotted using data obtained in laboratory tests in reagent grade acids. These data should be used only as a guide. It is recommended that samples be tested under actual plant conditions.

^{*}All test specimens were heat-treated at 2150°F (1177°C), rapid quenched and in the unwelded condition.

STANDARD PRODUCTS

By Brand or Alloy Designation:

HASTELLOY® Family of Corrosion-Resistant Alloys

B-2, B-3®, C-4, C-22®, C-276, C-2000®, D-205™, G-3, G-30®, G-50® and N

HASTELLOYFamily of Heat-Resistant Alloys

S. W and X

HAYNES® Family of Heat-Resistant Alloys

25, R-41, 75, HR-120®, 150, HR-160®, 188, 214™, 230®, 230-W™, 242™, 263, 556™, 625, 718, X-750, MULTIMET® and WASPALOY

Corrosion-Wear Resistant Alloy

ULTIMET®

Wear-Resistant Alloy

6B

HAYNES Titanium Alloy Tubular

Ti-3Al-2.5V

Standard Forms:

Bar, Billet, Plate, Sheet, Strip, Coils, Seamless or Welded Pipe & Tubing, Pipe Fittings, Flanges, Fittings, Welding Wire and Coated Electrodes

Properties Data:

The data and information in this publication are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature, and are believed to be reliable. However, we do not make any warranty or assume any legal liability or responsibility for its accuracy, completeness or usefulness, nor do we represent that its use would not infringe upon private rights. Any

suggestions as to uses and applications for specific alloys are opinions only and Haynes International, Inc. makes no warranty of results to be obtained in any particular situation. For specific concentrations of elements present in a particular product and a discussion of the potential health effects thereof, refer to the Material Safety Data Sheet supplied by Haynes International, Inc.

For More Information Contact:

Kokomo, Indiana 46904-9013

1020 W. Park Avenue P.O. Box 9013 Tel: 765-456-6012 800-354-0806 FAX: 765-456-6905

Anaheim, California 92806

Stadium Plaza 1520 South Sinclair Street Tel: 714-978-1775 800-531-0285 FAX: 714-978-1743

Arcadia, Louisiana 71001-9701

3786 Second Street Tel: 318-263-9571 800-648-8823 FAX: 318-263-8088

Windsor, Connecticut 06095

430 Hayden Station Road Tel: 860-688-7771 800-426-1963 FAX: 860-688-5550

Houston, Texas 77041

The Northwood Industrial Park 12241 FM 529 Tel: 713-937-7597 800-231-4548 FAX: 713-937-4596

England

Haynes International, Ltd. P.O. Box 10 Parkhouse Street Openshaw Manchester, M11 2ER Tel: 44-161-230-7777 FAX: 44-161-223-2412

France

Haynes International, S.A.R.L. Zi des Bethunes 10 rue de Picardie 95310 Saint-Ouen L'Aumone Tel: 33-1-34-48-3100 FAX: 33-1-30-37-8022

Italy

Haynes International, S.R.L. Viale Brianza, 8 20127 Milano Tel: 39-2-2614-1331 FAX: 39-2-282-8273

Switzerland

Nickel Contor AG Hohlstrasse 534 CH-8048 Zurich Tel: 41-1-434-7080 FAX: 41-1-431-8787

www.haynesintl.com