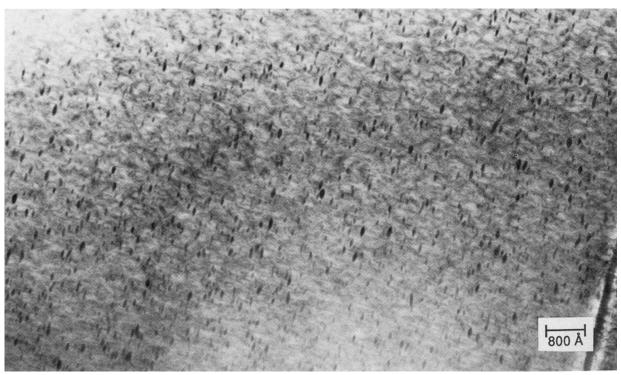


HAYNES® 242™ ALLOY

An age-hardenable Ni-Mo-Cr alloy that combines high-temperature strength, low thermal expansion characteristics and good oxidation-resistance for service to 1400°F (760°C). Also resistance to high-temperature fluorine and fluoride environments.


Contents

Principal Features	3
Chemical Composition	3
Stress-Rupture Properties	4
Tensile Properties	6
Cold-Worked and Aged Tensile Properties	8
Comparison of Thermal Expansion Characteristics	9
Fatigue Properties	10
Hot Hardness Data	10
Thermal Stability	11
Physical Properties	12
Oxidation Resistance	14
Resistance to High-Temperature Fluoride Environments	16
Resistance to Nitriding	17
Resistance to Salt Spray Corrosion	17
Resistance to Hydrogen Embrittlement	17
Aqueous Corrosion Resistance	18
Fabrication and Welding	18
Health and Safety Information	119
Machining	19
	_

NEW LONG-RANGE-ORDER STRENGTHENING MECHANISM

HAYNES® 242™ alloy derives its age-hardened strength from a unique long-range-ordering reaction which essentially doubles the un-aged strength while preserving excellent

ductility. The ordered Ni₂(Mo,Cr)-type domains are less than a few hundred Angstroms in size, and are visible only with the use of electron microscopy.

Transmission electron micrograph showing long-range-ordered domains (dark lenticular particles) in 242[™] alloy. (Courtesy Dr. Vijay Vasudevan, University of Cincinnati). Sample was solution heat treated at 2012°F (1100°C) and aged for 100 hours at 1200°F (650°C).

PRINCIPAL FEATURES

Excellent High-Temperature

Strength, Low Thermal Expansion Characteristics, and Good Oxidation Resistance HAYNES® 242™ alloy is an agehardenable nickel-molybdenumchromium alloy which derives its strength from a long-rangeordering reaction upon aging. It has tensile and creep strength properties up to 1300°F (705°C) which are as much as double those for solid solution strengthened alloys, but with high ductility in the aged condition. The thermal expansion characteristics of 242 alloy are much lower than those for most other alloys, and it has very good oxidation resistance up to 1500°F (815°C). Other attractive features include excellent low cycle fatique properties, very good thermal stability, and resistance to high-temperature fluorine and fluoride environments.

Fabrication

HAYNES 242 alloy has very good forming and welding characteristics in the annealed condition. It may be forged or otherwise hot-worked by conventional techniques, and it is readily cold formable. Welding may be performed in the annealed condition by standard gas tungsten arc (GTAW) or gas metal arc (GMAW) techniques. Use of matching composition filler metal is suggested. For further information on forming and fabrication, contact Haynes International.

Heat Treatment

HAYNES 242 alloy is furnished in the annealed condition, unless otherwise specified. The alloy is usually annealed in the range of 1900-2050°F (925-1120°C), depending upon specific requirements, followed by an air cool (or more rapid cooling) before aging. A water quench is recommended for heavy section components.

Aging is performed at 1200°F (650°C) for a period of 24-48 hours, followed by an air cool.

Available in Convenient Forms HAYNES 242 alloy is produced in the form of reforge billet, bar, plate, sheet, and wire welding products, all in various sizes. Other forms may be produced

upon request.

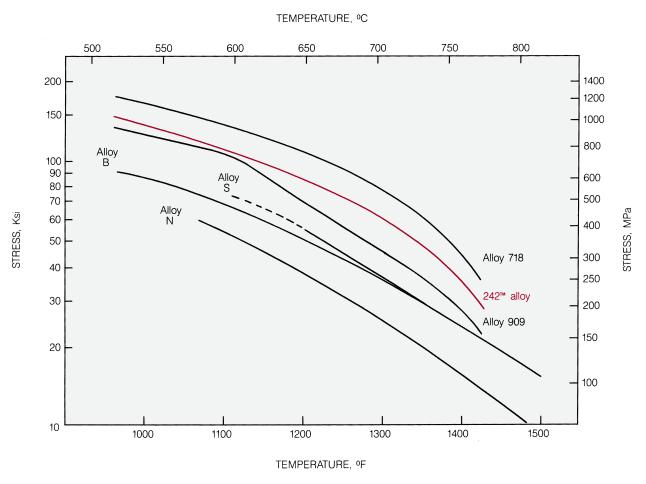
Applications

HAYNES 242 alloy combines properties which make it ideally suited for a variety of component applications in the aerospace industry. It will be used for seal rings, containment rings, duct segments, casings, fasteners, rocket nozzles, pumps, and many others. In the chemical process industry, 242 alloy will find use in high-temperature hydrofluoric acid vaporcontaining processes as a consequence of its excellent resistance to that environment. The alloy also displays excellent resistance to hightemperature fluoride salt mixtures. The high strength and fluorine environmentresistance of 242 alloy has also been shown to provide for excellent service in fluoroelastomer process equipment, such as extrusion screws.

CHEMICAL COMPOSITION, PERCENT

Ni	Mo	Cr	Fe	Со	Mn	Si	ΑI	С	В	Cu
65ª	24.0- 26.0	7.0- 9.0-	2.0*	2.5*	0.80*	0.80*	0.50*	0.03*	0.006*	0.50*

^a As balance


^{*}Maximum

STRESS-RUPTURE STRENGTH

HAYNES® 242™ alloy is an agehardenable material which combines excellent strength and ductility in the aged condition with good fabricability in the annealed condition. It is particularly effective for strength-limited applications up to 1300°F (705°C), where its strength is as much as double that for typical solid-solution strengthened alloys. It may be used at higher

temperatures, where its solid-solution strength is still excellent, but oxidation resistance limits such uses to about 1500-1600°F (815-870°C).

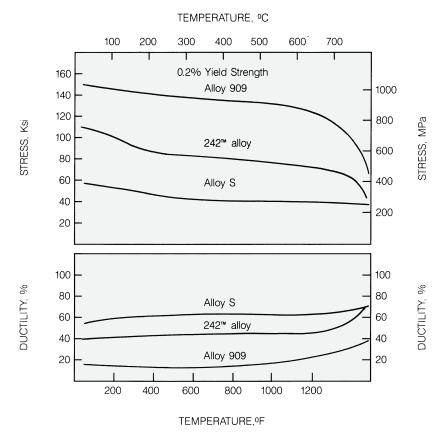
COMPARISON OF 100 HOUR STRESS-RUPTURE STRENGTHS*

*Alloy B and Alloy N sheet products. All others hot forged or rolled plate, bar, and rings.

STRESS-RUPTURE STRENGTH (continued)

HOT-ROLLED PLATE – ANNEALED AND AGED

Test Temperature	Re	Approximate Initial Stress, Ksi (MPa) Required to Cause Rupture in Specified Time				
°F (°C)	10 Hrs.	100 Hrs.	1000 Hrs.			
1000 (540)	160 (1105)	140 (965)	120 (825)			
1100 (595)	130 (895)	110 (760)	93 (640)			
1200 (650)	105 (725)	90 (620)	75 (515)			
1300 (705)	86 (595)	69 (475)	35 (240)			
1400 (760)	62 (425)	29 (200)	17 (115)			
1500 (815)	26 (180)	16 (110)	11 (76)			
1600 (870)	15 (105)	11 (74)	_			


TENSILE PROPERTIES

BAR AND RINGS - ANNEALED AND AGED

Test Temperature °F (°C)	Ultin Ten <u>Strer</u> Ksi	sile	0.2% Strer Ksi		Elongation in 4D %	Reduction in Area %
Room	187.4	1290	122.4	845	33.7	45.7
200 (95)	180.7	1245	110.4	760	31.7	47.0
400 (205)	173.5	1195	102.3	705	33.0	51.8
600 (315)	168.6	1160	96.5	665	33.4	48.4
800 (425)	161.3	1110	86.3	595	37.6	45.9
1000 (540)	156.3	1080	78.3	540	38.3	49.9
1200 (650)	144.9	1000	82.7	570	33.2	41.1
1400 (760)	106.2	730	44.9	310	44.3	54.1
1600 (870)	72.5	500	44.8	310	49.7	85.1
1800 (980)	42.0	290	30.6	210	54.0	97.8

COMPARISON OF YIELD STRENGTHS AND ELONGATIONS*

HAYNES® 242™ alloy exhibits much higher yield strength than typical solid-solution-strengthened nickel-base alloys, such as HASTELLOY® S alloy, but also possesses excellent ductility in the fully heat-treated condition. This can translate into excellent containment characteristics for gas turbine rings and casings, particularly when coupled with 242 alloy's lower expansion coefficient and excellent ductility retention following thermal exposure. This combination is also well suited for a range of fastener and bolting applications up to 1300°F (705°C).

^{*}Plate material or manufacturer's data.

TENSILE PROPERTIES (continued)

HOT-ROLLED PLATE – ANNEALED AND AGED^(a)

T		nate	0.207	\/:- -	Florenskien	Dadosklas
Test	Ten	siie	0.2%	Yield	Elongation	Reduction
Temperature	Strei	ngth	Stre	ngth	in 4D	in Area
°F (°C)	Ksi	MPa	Ksi	MPa	%	%
75 (25)	193	1330	126	868	36	_
400 (205)	176	1213	101	696	43	52
800 (425)	165	1137	91	627	45	52
1000 (540)	164	1130	89	613	44	51
1100 (595)	160	1102	89	613	44	51
1200 (650)	141	971	87	599	29	31
1300 (705)	118	813	73	503	28	30

COLD-ROLLED SHEET – ANNEALED AND AGED^(a)

	Ultir	nate				
Test	Ten	sile	0.2%	Yield	Elongation	Reduction
Temperature	Stre	ngth	Stre	ngth	in 4D	in Area
°F (°C)	Ksi	MPa	Ksi	MPa	%	%
75 (25)	187	1288	120	827	38	_
1000 (540)	165	1137	106	730	31	_
1100 (595)	150	1034	102	703	18	_
1200 (650)	135	930	96	661	14	_
1300 (705)	109	751	83	572	10	_

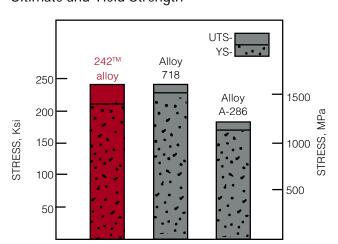
⁽a) Average of two tests per heat, two heats of each product form. Solution Annealed + Aged 1200°F-48 hr.

TENSILE PROPERTIES (continued)

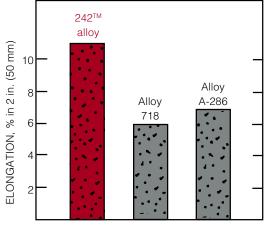
COLD-REDUCED SHEET - AS COLD-WORKED AND COLD-WORKED PLUS AGED

HAYNES® 242 alloy has excellent strength and ductility as a cold-reduced and directly aged product. Coupled with its low

thermal expansion characteristics, this makes it an excellent choice for fasteners and springs.


	Test Temperature °F (°C)	Ter	mate nsile ength MPa		6 Yield ength MPa	Elongation in 2 in. (50 mm) %
M.A.	Room	137.6	950	65.3	450	47
M.A. + 20% C.W.	Room	169.6	1170	139.5	960	20
M.A. + 40% C.W.	Room	217.9	1500	181.3	1250	8
M.A. + Age	Room	192.0	1325	130.0	895	32
M.A. + 20% C.W. + Age	Room	209.5	1445	173.0	1195	21
M.A. + 40% C.W. + Age	Room	244.7	1685	219.7	1515	11
M.A. + 40% C.W. + Age	1100 (595)	201.9	1390	191.4	1320	11
M.A. + 40% C.W. + Age	1200 (650)	198.7	1370	145.9	1005	8
M.A. + 40% C.W. + Age	1300 (705)	183.7	1265	134.3	925	11
M.A. + 40% C.W. + Age	1400 (760)	156.0	1075	94.1	650	32

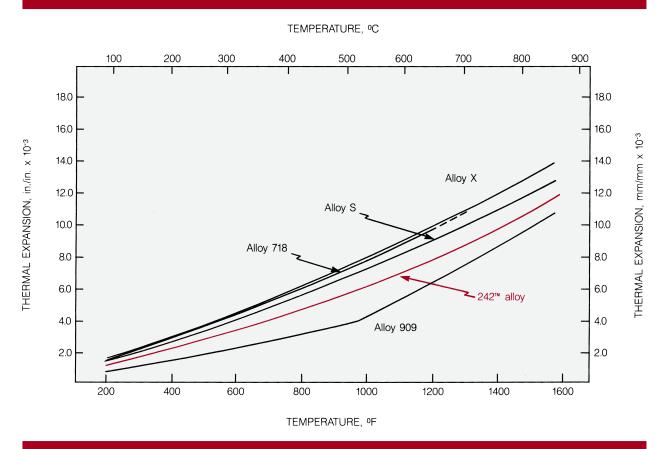
^{*}M.A. = Solution Anneal; C.W. = Cold Work; Age = Standard Aging Treatment.


COMPARATIVE FASTENER ALLOY TENSILE PROPERTIES*

HAYNES 242 alloy compares very favorably with other coldworked and directly aged fastener alloys. The graphs below present comparative room temperature tensile properties for 40% cold-reduced and aged sheet product.

Ultimate and Yield Strength

Elongation


^{*}Alloys cold-rolled to 40% reduction. 242 alloy aged 1200°F (650°C)/24 hours/AC; alloy 718 aged 1325°F (720°C)/8 hours/FC to 1150°F (620°C)/8 hours/AC; alloy A-286 aged 1200°F (650°C)16 hours/AC.

COMPARISON OF THERMAL EXPANSION CHARACTERISTICS

HAYNES® 242™ alloy exhibits significantly lower thermal expansion characteristics than most nickel-base high-temperature alloys in the range of temperature from room temperature to 1600°F (870°C). Although

its expansion is greater than that for alloy 909 below 1000°F (540°C), at higher temperatures, the difference narrows considerably.

TOTAL THERMAL EXPANSION, ROOM TO ELEVATED TEMPERATURE

MEAN COEFFICIENT OF THERMAL EXPANSION

The following compares the mean coefficient of expansion for several alloys:

Mean Coefficient of Expansion From RT to Temperature, in./in.-ºF (mm/mm-ºC) x 10-6

Material	1000°F (540°C)	1100°F (595°C)	1200°F (650°C)	1300°F (705°C)	1400°F (760°C)
Alloy 909	5.0 (9.0)	5.4 (9.7)	5.8 (10.4)	6.2 (11.2)	6.6 (11.9)
242™ alloy	6.8 (12.2)	6.8 (12.3)	7.0 (12.6)	7.2 (13.0)	7.7 (13.9)
Alloy B	6.7 (12.0)	6.7 (12.0)	6.7 (12.0)	6.9 (12.4)	7.1 (12.8)
Alloy N	7.3 (13.1)	7.4 (13.3)	7.5 (13.5)	7.6 (13.7)	7.8 (14.0)
Alloy S	7.4 (13.2)	7.5 (13.5)	7.6 (13.7)	7.8 (14.0)	8.0 (14.4)
Alloy X	8.4 (15.1)	8.5 (15.3)	8.6 (15.5)	8.6 (15.7)	8.8 (15.8)

LOW CYCLE FATIGUE PROPERTIES

STRAIN-CONTROLLED LCF PROPERTIES (HOT-ROLLED PLATE)

The following LCF properties were generated from hot-rolled and fully heat-treated plate. Testing was performed in the transverse direction utilizing a smooth, round bar specimen

geometry. The specimens were tested by fully reversed axial strain cycling, R-ratio of -1.0, and a cycle frequency of 20 cpm (0.33 Hz) at a strain range of 1%.

Cycles to Failure at 1200°F (650°C), N_E

HAYNES® 242™ alloy	HASTELLOY® X alloy	HAYNES 188 alloy	HAYNES HR-120® alloy
2000	4000	2100	3600

STRESS-CONTROLLED NOTCHED LCF PROPERTIES (HOT-ROLLED RINGS)

The following test results were generated from hot-rolled and fully heat-treated rings destined for actual gas turbine engine part applications. Testing was performed in the tangential direction utilizing a round test

bar geometry with a double notch design (K₁=2.18). Loading was uniaxial cycling with an R-ratio of 0.05 stress and a cycle frequency of 20 cpm (0.33 Hz).

Maximum Stress

Cycles to Failure at 1200°F (650°C), N_E

Ksi	MPa	242™ alloy	Alloy 909
110	760	845	2,835
100	690	12,220	22,568
95 90	655	32,587	13,796
90	620	76,763	59,679; 40,525
85	585	297,848	47,707; 43,701
80	550	304,116*	129,573**

^{*} No crack observed at 198,030 cycles. 8 mil (200µm) crack observed at 200,000 cycles.

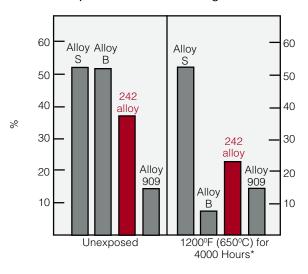
HIGH-TEMPERATURE HARDNESS PROPERTIES

The following are results from standard vacuum furnace hot hardness tests. Values are given in originally measured DPH (Vickers) units and conversions to Rockwell C/B scale in parentheses.

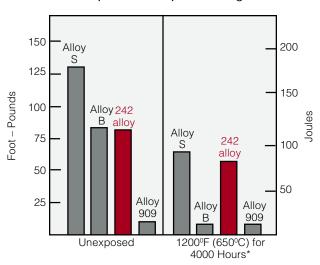
Vickers Diamond Pyramid Hardness (Rockwell C/B Hardness)

Material	800°F (425°C)	1000°F (540°C)	1200°F (650°C)	1400°F (760°C)	1600°F (870°C)
242™ alloy	271 (R _c 26)	263 (R _c 24)	218 (R _B 95)	140 (R _B 75)	78
Alloy 6B	269 (R _c 26)	247 (R _c 22)	225 (R _B 98)	153 (R _B 81)	91
Alloy 25	171 (R _B 87)	160 (R _B 83)	150 (R _B 80)	134 (R _B 74)	93
Alloy 188	170 (R _B 86)	159 (R _B 83)	147 (R _B 77)	129 (R _B 72)	89
230 [®] alloy	142 (R _B 77)	139 (R _B 76)	132 (R _B 73)	125 (R _B 70)	75
556™ alloy	132 (R _B 73)	129 (R _B 72)	118 (R _B 67)	100 (R _B 55)	67

^{**}No crack observed at 45,800 cycles. 8 mil (200µm) crack observed at 47,770 cycles.


THERMAL STABILITY

HAYNES® 242™ alloy has excellent retained ductility and impact strength after long-term thermal exposure at temperature. Combined with its high strength and low thermal expansion characteristics, this makes for very good containment properties in gas turbine static struc-


tures. The graphs below show the retained roomtemperature tensile elongation and impact strength for 242 alloy versus other relevent materials after a 4000 hour exposure at 1200°F (650°C).

COMPARATIVE RETAINED DUCTILITY AND IMPACT STRENGTH

Room-Temperature Tensile Elongation

Room Temperature Impact Strength

ROOM-TEMPERATURE PROPERTIES AFTER EXPOSURE AT 1200°F (650°C)*

	Ultimate				
Exposure	Tensile	0.2% Yield	Elongation	Reduction	Charpy
Time	Strength	Strength	in 2 in. (50 mm)	in Area	V-Notch
Hours	Ksi MPa	Ksi MPa	%	%	FtIbs. Joules
0	179 1235	110 760	39	44	66 90
1000	194 1340	119 820	28	38	41 56
4000	196 1350	122 840	25	37	31 42
8000	193 1330	121 835	24	39	26 35

^{*}Samples machined from plate after exposure. Duplicate tests

^{*}Alloy 909 data for 1000 hours.

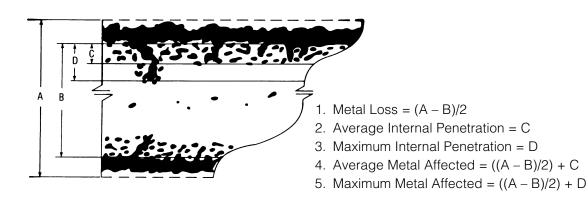
TYPICAL PHYSICAL PROPERTIES

	Temp., ⁰F	British Units	Temp., ºC	Metric Units
Density	Room	0.327 lb/in ³	Room	9.05 g/cm ³
Melting Range	2350-2510		1290-1375	
Electrical	Room	48.0 μohm-in	Room	122.0 μohm-cm
Resistivity	200	48.5 μohm-in	100	123.4 μohm-cm
-	400	49.3 μohm-in	200	125.1 μohm-cm
-	600	50.0 μohm-in	300	126.7 μohm-cm
-	800	50.6 μohm-in	400	128.0 μohm-cm
-	1000	51.1 μohm-in	500	129.5 μohm-cm
-	1200	51.7 μohm-in	600	130.6 μohm-cm
-	1400	52.4 μohm-in	700	132.0 μohm-cm
-	1600	51.3 μohm-in	800	132.4 μohm-cm
-	1800	50.4 μohm-in	900	129.8 μohm-cm
-			1000	127.6 μohm-cm
Thermal Diffusivity	Room	4.7 x 10 ⁻³ in ² /sec	Room	30.5 x 10 ⁻³ cm ² /sec
-	200	5.1 x 10 ⁻³ in ² /sec	100	32.9 x 10 ⁻³ cm ² /sec
-	400	5.6 x 10 ⁻³ in ² /sec	200	35.9 x 10 ⁻³ cm ² /sec
-	600	6.1 x 10 ⁻³ in ² /sec	300	39.0 x 10 ⁻³ cm ² /sec
-	800	6.6 x 10 ⁻³ in ² /sec	400	41.9 x 10 ⁻³ cm ² /sec
-	1000	7.2 x 10 ⁻³ in ² /sec	500	45.0 x 10 ⁻³ cm ² /sec
-	1200	7.9 x 10 ⁻³ in ² /sec	600	48.1 x 10 ⁻³ cm ² /sec
-	1400	7.2 x 10 ⁻³ in ² /sec	700	51.2 x 10 ⁻³ cm ² /sec
-	1600	7.0 x 10 ⁻³ in ² /sec	800	44.2 x 10 ⁻³ cm ² /sec
-	1800	7.6 x 10 ⁻³ in ² /sec	900	46.6 x 10 ⁻³ cm ² /sec
-			1000	49.6 x 10 ⁻³ cm ² /sec
Thermal	Room	75.7 BTU-in/ft² hrºF	Room	11.3 W/m-K
Conductivity	200	83.6 BTU-in/ft ² hr- ⁰ F	100	12.6 W/m-K
	400	96.1 BTU-in/ft ² hr- ⁰ F	200	14.2 W/m-K
-	600	108.5 BTU-in/ft² hr-ºF	300	15.9 W/m-K
	800	120.9 BTU-in/ft² hr-ºF	400	17.5 W/m-K
	1000	133.3 BTU-in/ft ² hr- ⁰ F	500	19.2 W/m-K
	1200	145.7 BTU-in/ft ² hr- ⁰ F	600	20.9 W/m-K
-	1400	158.2 BTU-in/ft² hr-ºF	700	22.5 W/m-K
-	1600	170.6 BTU-in/ft² hr-ºF	800	24.2 W/m-K
-	1800	183.0 BTU-in/ft² hr-ºF	900	25.8 W/m-K
			1000	27.5 W/m-K

TYPICAL PHYSICAL PROPERTIES (continued)

	Temp., ⁰F	British Units	Temp., ⁰C	Metric Units
Specific Heat	Room	0.092 BTU/lb-ºF	Room	386 J/Kg-k
_	200	0.097 BTU/lb-ºF	100	405 J/Kg-K
	400	0.100 BTU/lb-ºF	200	419 J/Kg-K
	600	0.103 BTU/lb-ºF	300	431 J/Kg-K
_	800	0.106 BTU/lb-ºF	400	439 J/Kg-K
-	1000	0.110 BTU/lb-ºF	500	451 J/Kg-K
_	1200	0.118 BTU/lb-ºF	600	470 J/Kg-K
	1400	0.144 BTU/lb-ºF	700	595 J/Kg-K
	1600	0.146 BTU/lb-ºF	800	605 J/Kg-K
_	1800	0.150 BTU/lb-ºF	900	610 J/Kg-K
			1000	627 J/Kg-K
Mean Coefficient of	70-200	6.0 microinches/in-ºF	25-100	10.8 μm/m- ⁰ C
Thermal Expansion	70-400	6.3 microinches/in-°F	25-200	11.3 μm/m-°C
_	70-600	6.5 microinches/in-°F	25-300	11.6 μm/m-°C
	70-800	6.7 microinches/in-°F	25-400	11.9 μm/m-°C
-	70-1000	6.8 microinches/in-°F	25-500	12.2 μm/m-°C
-	70-1100	6.8 microinches/in-°F	25-600	12.3 μm/m-°C
-	70-1200	6.9 microinches/in-°F	25-650	12.4 μm/m-°C
_	70-1300	7.2 microinches/in-°F	25-700	13.0 μm/m-°C
_	70-1400	7.7 microinches/in-°F	25-750	13.7 μm/m-°C
-	70-1600	8.0 microinches/in-°F	25-800	14.0 μm/m-°C
-	70-1800	8.3 microinches/in-°F	25-900	14.5 μm/m-°C
-			25-1000	15.0 μm/m-°C

DYNAMIC MODULUS OF ELASTICITY


Temp., ⁰F	Dynamic Modulus of Elasticity, 10 ⁶ psi	Temp., °C	Dynamic Modulus of Elasticity, GPa
Room	33.2	Room	229
200	32.7	100	225
400	31.8	200	219
600	30.8	300	213
800	29.7	400	206
1000	28.6	500	199
1200	27.6	600	193
1400	25.7	700	185
1600	24.0	800	172
1800	22.4	900	163
		1000	152

OXIDATION RESISTANCE

HAYNES® 242™ alloy exhibits very good oxidation resistance at temperatures up to 1500°F (815°C), and should not require protective coatings for continuous or intermittent service at

these temperatures. The alloy is not specifically designed for use at higher temperatures, but can tolerate short-term exposures.

SCHEMATIC REPRESENTATION OF METALLOGRAPHIC TECHNIQUE USED FOR EVALUATING OXIDATION TESTS

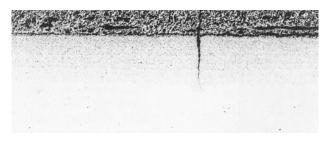
COMPARATIVE BURNER RIG OXIDATION-RESISTANCE AT 1400°F (760°C) FOR 500 HOURS

		etal ess	Aver Me Affec	tal	Maxir Me Affec	tal	
Alloy	Mils	μm	Mils	μm	Mils	μm	
HASTELLOY® N alloy	0.7	18	0.8	20	1.2	30	
242™ alloy	1.1	28	1.2	30	1.6	41	
HASTELLOY B alloy	1.8	46	2.6	66	2.8	71	
Alloy 909	0.3	8	10.8	275	12.8	325	

Oxidation Test Parameters

Burner rig oxidation tests were conducted by exposing samples 3/8 inch x 2.5 inches x thickness (9mm x 64mm x thickness), in a rotating holder, to the products of combustion of No. 2 fuel oil

burned at a ratio of air to fuel of about 50:1. (Gas velocity was about 0.3 mach). Samples were automatically removed from the gas stream every 30 minutes and fan-cooled to near ambient temperature and then reinserted into the flame tunnel.


BURNER RIG OXIDATION-RESISTANCE (continued)

HAYNES® 242™ alloy Average Metal Affected = 1.2 Mils (30 μm)

HASTELLOY® B alloy Average Metal Affected = 2.6 Mils (66 μm)

Alloy 909 Average Metal Affected = 10.8 Mils (275 μm)

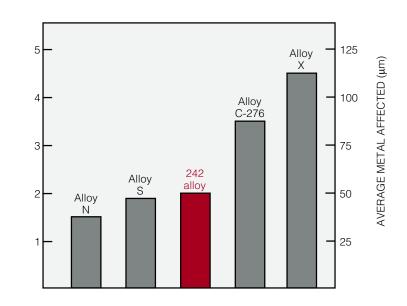
Microstructures shown relate to the burner rig oxidation test data shown on the page opposite for three of the materials evaluated. The black area shown at the top of the pictures for 242TM alloy and alloy B represent thickness loss during the test. The alloy 909 apparently exhibited only minor thickness loss. This is believed to be a consequence of the sample actually swelling during the exposure due to oxygen absorption. The sample also developed a very thick, coarse scale and extensive internal oxidation. There was also evidence of significant cracking in the alloy 909 specimen due to the thermal cycling. even though the test samples were not constrained.

COMPARATIVE OXIDATION-RESISTANCE IN FLOWING AIR AT 1500°F (815°C) FOR 1008 HOURS*

	Metal Loss	Average I	Metal Affected
Alloy	Mils µm	Mils	μm
242™ alloy	0.0	0.5	13
HASTELLOY® S alloy	0.0	0.5	13
HASTELLOY X alloy	0.1 3	1.1	28
HASTELLOY N alloy	0.4 10	1.2	30
HASTELLOY B alloy	7.2 183	8.2	208
Alloy 909	4.4 112	19.4	493

^{*}Coupons exposed to flowing air at a velocity of 7.0 feet/minute (2.1m/minute) past the samples. Samples cycled to room temperature once-a-day.

RESISTANCE TO HIGH-TEMPERATURE FLUORIDE ENVIRONMENTS


Research has shown that materials which have high molybdenum content and low chromium content are generally superior to other materials in resisting high-temperature

corrosion in fluorine-containing environments. HAYNES® 242™ alloy is in that category, and displays excellent resistance to both fluoride gas and fluoride salt environments.

COMPARATIVE RESISTANCE TO 70% HF AT 1670°F (910°C) FOR 136 HOURS

	Thickn		
Alloy	Mils	mm	
242™ alloy	12.6	0.3	
HASTELLOY® S alloy	15.8	0.4	
HASTELLOY N alloy	15.8	0.4	
Alloy 625	47.2	1.2	
230 [®] alloy	70.9	1.8	
C-22® alloy	78.7	2.0	
Alloy 600	141.7	3.6	

COMPARATIVE RESISTANCE TO KCI-KF-NaF MIXED SALTS

Samples were exposed to a mixture of KCI-KF-NaF salts for a total of 40 hours in service. Temperature was cycled from 1290 to 1650°F (700-900°C) during the course of the exposure.

AVERAGE METAL AFFECTED (Mils)

RESISTANCE TO NITRIDING

HAYNES® 242™ alloy have very good resistance to nitriding environments. Tests were

performed in flowing ammonia at 1800°F (980°C) for 168 hours. Nitrogen absorption was determined by chemical analysis before and after exposure and knowledge of the specimen area.

	Nitrogen Absorption	
Alloy	(mg/cm²)	
HAYNES® 214 alloy	0.3	
HAYNES 242™ alloy	0.7	
Alloy 600	0.9	
HAYNES 230® alloy	1.4	
HASTELLOY® X alloy	3.2	
Alloy 800H	4.0	
Type 316 Stainless Steel	6.0	
Type 304 Stainless Steel	7.3	
Type 310 Stainless Steel	7.7	

RESISTANCE TO SALT-SPRAY CORROSION

HAYNES 242 alloy exhibits good resistance to corrosion by sodium-sulfate-containing sea water environment at 1200°F (650°C). Tests were performed

by heating specimens to 300°F (150°C), spraying with a simulated sea water solution, cooling and storing at room temperature for a week, heating to 1200°F

(650°C) for 20 hours in still air; cooling to room temperature, heating and spraying again at 300°F (150°C), and storing at room temperature for a week.

	Metal Loss		Maximum Metal Affected
Alloy	Mils	μm	Mils µm
HASTELLOY® S alloy	0.10	2.5	0.20 5.1
HAYNES® 242™ alloy	0.15	3.8	0.30 7.6
HASTELLOY B alloy	0.20	5.1	0.30 7.6
Alloy 909	0.40	10.2	1.20 30.5

RESISTANCE TO HYDROGEN EMBRITTLEMENT

Notched room-temperature tensile tests performed in hydrogen and air reveal that 242 alloy is roughly equivalent to alloy 625 in resisting hydrogen embrittlement, and appears to be superior to many important materials. Tests were performed in MIL-P27201B grade hydrogen, with a crosshead speed of 0.005 in./min. (0.13 mm/min.).

	Hydroger	n Pressure		Ratio of Notched Tensile Strength
Alloy	Psig	MPa	Kt	Hydrogen/Air
Waspaloy alloy	7,000	48	6.3	.78
Alloy 625	5,000	34	8.0	.76
242™ alloy	5,000	34	8.0	.74
Alloy 718	10,000	69	8.0	.46
Alloy R-41	10,000	69	8.0	.27
Alloy X-750	7,000	48	6.3	.26
71110 / 77 700	7,000	10	0.0	.20

AQUEOUS CORROSION RESISTANCE

Although not specifically designed for use in applications which require resistance to aqueous corrosion, 242™ alloy does exhibit resistance in some media which compares favorably

with that exhibited by traditional corrosion-resistant alloys. Data shown for 242 alloy was generated for samples tested in the mill annealed condition.

Corrosion	Rate.	Mils/\	vear (mm/	vear`)

Corrosive Media	Temperature °F (°C)	Exposure Hours	242™ alloy	alloy B-2	C-22® alloy	alloy N
5% HF	175 (79)	24	14 (0.36)	12 (0.30)	25 (0.64)	20 (0.51)
48% HF	175 (79)	24	32 (0.81)	25 (0.64)	27 (0.69)	31 (0.79)
70% HF	125 (52)	24	35 (0.89)	66 (1.68)	32 (0.81)	48 (1.22)
10% HCI	Boiling	24	22 (0.56)	7 (0.18)	400 (10.16)	204 (5.18)
20% HCI	Boiling	24	41 (1.04)	15 (0.38)	380 (9.65)	_
55% H ₃ PO ₄	Boiling	24	3 (0.08)	4 (0.10)	9 (0.23)	_
85% H ₃ PO ₄	Boiling	24	4 (0.10)	4 (0.10)	120 (3.05)	_
10% H ₂ SO ₄	Boiling	24	2 (0.05)	2 (0.05)	11 (0.28)	46 (1.17)
50% H ₂ SO ₄	Boiling	24	5 (0.13)	1 (0.03)	390 (9.91)	_
99% ACETIC	Boiling	24	<1 (<0.03)	1 (0.03)	Nil	_

FABRICATION AND WELDING

HAYNES® 242 alloy has excellent forming and welding characteristics. It may be hot-worked at temperatures in the range of about 1800-2250°F (980-1230°C) provided the entire piece is soaked for a time sufficient to bring it uniformly to temperature. Initial breakdown is normally performed at the higher end of the range, while finishing is usually done at the lower temperatures to afford grain refinement.

As a consequence of its good ductility, 242 alloy is also readily formed by cold-working. All hotor cold-worked parts should be annealed at 1900-2050°F (925-1120°C) and cooled by air cool or faster rate before aging at 1200°F (650°C) in order to develop the best balance of properties.

The alloy can be welded by a variety of processes, including gas tungsten arc, gas metal arc, and shielded metal arc. High heat input processes such as submerged arc and oxyacetalyne welding are not recommended.

Welding Procedures

Welding procedures common to most high-temperature, nickel-base alloys are recommended. These include use of stringer beads and an interpass temperature less than 200°F (95°C). Preheat is not required. Cleanliness is critical, and careful attention should be given to the removal of grease, oil, crayon marks, shop dirt, etc. prior to welding. Because of the alloy's high nickel content, the weld puddle will be somewhat "sluggish" relative to steels. To avoid lack of

fusion and incomplete penetration defects, the root opening and bevel should be sufficiently open.

Filler Metals

HAYNES 242 alloy should be joined using matching filler metal. If shielded metal arc welding is used, HASTELLOY® W alloy coated electrodes are suggested.

Post-Weld Heat Treatment HAYNES 242 alloy is normally used in the fully-aged condition. However, following forming and welding, a full solution anneal is recommended prior to aging in order to develop the best joint and overall mechanical properties.

FABRICATION AND WELDING (continued)

Typical root, face, and side bends (L to R) for welded 242[™] alloy 0.5-inch (13 mm) plate and matching filler metal. Bend radius was 1.0 inch (25 mm).

HEALTH AND SAFETY INFORMATION

Welding can be a safe occupation. Those in the welding industry, however, should be aware of the potential hazards associated with welding fumes, gases, radiation, electric shock, heat, eye injuries, burns, etc. Also, local, municipal, state, and federal regulations (such as those issued by OSHA) relative to welding and cutting processes should be considered.

Nickel-, cobalt-, and iron-base alloy products may contain, in varying concentrations, the following elemental constituents: aluminum, cobalt, chromium, copper, iron, manganese, molybdenum, nickel and tung-

sten. For specific concentrations of these and other elements present, refer to the Material Safety Data Sheets (MSDS) H3095 and H1072 for the product.

Inhalation of metal dust or fumes generated from welding, cutting, grinding, melting, or dross handling of these alloys may cause adverse health effects such as reduced lung function, nasal and mucous membrane irritation. Exposure to dust or fumes which may be generated in working with these alloys may also cause eye irritation, skin rash and effects on other organ systems.

The operation and maintenance of welding and cutting equipment should conform to the provisions of American National Standard ANSI/AWS Z49.1, "Safety in Welding and Cutting". Attention is especially called to Section 7 (Protection of Personnel) and 8 (Health Protection and Ventilation) of ANSI/AWS Z49.1. Mechanical ventilation is advisable and, under certain conditions such as a very confined space, is necessary during welding or cuttiing operations, or both, to prevent possible exposure to hazardous fumes, gases, or dust that may occur.

MACHINING GUIDELINES

HAYNES® 242™ alloy may be machined in either the solution-annealed or aged conditions. Carbide tools are recommended. In the annealed condition (R_B 95-100 typical hardness) the alloy is somewhat "gummy". Better

results may be achieved by performing machining operations on material in the agehardened condition (R_C 35-39 typical hardness). Finish turning has been successfully done employing carbide tools

with a depth of cut in the range of 0.010-0.020 inch (0.25-0.50 mm), rotation speeds of 200-400 rpm, 40-80 sfm, and a waterbase lubricant.

STANDARD PRODUCTS

By Brand or Alloy Designation:

HASTELLOY® Family of Corrosion-Resistant Alloys

B-2, B-3®, C-4, C-22®, C-276, C-2000®, D-205™, G-3, G-30®, G-50® and N

HASTELLOY Family of Heat-Resistant Alloys

S, W and X

HAYNES® Family of Heat-Resistant Alloys

25, R-41, 75, HR-120®, 150, HR-160®, 188, 214™, 230®, 230-W™, 242™, 263, 556™, 625, 718, X-750, MUI TIMFT® and WASPAL OY

Corrosion-Wear Resistant Alloy

ULTIMET®

Wear-Resistant Alloy

6B

HAYNES Titanium Alloy Tubular

Ti-3AI-2.5V

Standard Forms:

Bar, Billet, Plate, Sheet, Strip, Coils, Seamless or Welded Pipe & Tubing, Pipe Fittings, Flanges, Fittings, Welding Wire and Coated Electrodes

Properties Data:

The data and information in this publication are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature, and are believed to be reliable. However, we do not make any warranty or assume any legal liability or responsibility for its accuracy, completeness or usefulness, nor do we represent that its use would not infringe upon private

rights. Any suggestions as to uses and applications for specific alloys are opinions only and Haynes International, Inc. makes no warranty of results to be obtained in any particular situation. For specific concentrations of elements present in a particular product and a discussion of the potential health effects thereof, refer to the Material Safety Data Sheet supplied by Haynes International, Inc.

For More Information Contact:

Kokomo, Indiana 46904-9013

1020 W. Park Avenue P.O. Box 9013 Tel: 765-456-6012 800-354-0806 FAX: 765-456-6905

Anaheim, California 92806

Stadium Plaza 1520 South Sinclair Street Tel: 714-978-1775 800-531-0285 FAX: 714-978-1743

Arcadia, Louisiana 71001-9701

3786 Second Street Tel: 318-263-9571 800-648-8823 FAX: 31<u>8-263-8088</u>

Windsor, Connecticut 06095

430 Hayden Station Road Tel: 860-688-7771 800-426-1963 FAX: 860-688-5550

Houston, Texas 77041

The Northwood Industrial Park 12241 FM 529 Tel: 713-937-7597 800-231-4548 FAX: 713-937-4596

England

Haynes International, Ltd. P.O. Box 10 Parkhouse Street Openshaw Manchester, M11 2ER Tel: 44-161-230-7777 FAX: 44-161-223-2412

France

Haynes International, S.A.R.L. Zi des Bethunes 10 rue de Picardie 95310 Saint-Ouen L'Aumone Tel: 33-1-34-48-3100 FAX: 33-1-30-37-8022

Italy

Haynes International, S.R.L. Viale Brianza, 8 20127 Milano Tel: 39-2-2614-1331 FAX: 39-2-282-8273

Switzerland

Nickel Contor AG Hohlstrasse 534 CH-8048 Zurich Tel: 41-1-434-7080 FAX: 41-1-431-8787

www.haynesintl.com